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Figure 2.-Optical absorption spectrum of a freshly prepared 
solution of VOSOl in warm DMF. 

(CN)E-3 would result in a p value smaller than the 1.39 
value extrapolated from Figure 1 with A = 79.9 gauss. 
It is emphasized that the correlation may not lead to 
reliable values of p when the covalency is large, as for 
VO(CN)5-3, since p is calculated assuming an ionic 
model. 

The correlation does not hold for low-symmetry 
vanadyl complexes. The interpretation of the e.s.r. 
spectra of low-symmetry vanadyl complexes is discussed 
elsewhere. l6 

Although the correlation (Figure 1) based on as- 
signing the 18,000-26,000 cm.-l band as a d,, +- d,z 
transition is satisfactory, there is, of course, the pos- 
sibility that this is actually a charge-transfer band with 
a behavior that parallels the dXy + d,, transition. It 
seems unlikely that i t  could be the equatorial ligand-to- 
metal charge-transfer band since electron-withdrawing 
substituents such as CF3 are found to lower the energy 
of this band (Table I) in the vanadyl acetylacetonates; 
i t  has, however, been shomn17 that electron-withdrawing 
substituents in the substituted acetylacetonates nor- 
mally raise the energy of the ligand-to-metal charge- 
transfer band (note that vanadyl oxygen is not con- 
sidered a ligand in our terminology). 

It is more difficult to rule out the possibility that the 
transition is a charge transfer from the T orbitals of the 
vanadyl oxygen to the metal x y  orbital. Both this 
charge-transfer transition and the z2 transition are 
predicted to be I polarizedJ3 which appears to be the 
polarization found in the two cases that have been 
studied.2*0 A recent extension of electron spin reson- 
ance theory to take into consideration charge-transfer 

suggests that this band is not the charge- 
transfer transition from the T orbital of vanadyl oxygen 
to the metal x y  orbital since, if i t  were, there would be 
a positive contribution to the e.s.r. gL value such that 
the g l  value would be expected to be near 2.0023.l8 
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TABLE I1 
u AND T ELECTROSTATIC IXTERACTIONS FOR VYXB COMPOUNDS 
Compound uz, cm. -1 rz.  cm. -1 uu, cm. -1 vu, cm. -1  

VO(NCS)&-3 29,480'. 12,280h 43,580* 66,280* 
\.OF, - 3 22,  9206 8, 280b 35, 220b 62, 020b 
VOSO? 23,  540a 7,540" 107,540" 59,560" 

ment proposed in this paper. 
(1 Using optical assignment of ref. 2. 6 Using optical assign- 

The experimental g, values are 1.9813 for VOS04,14 
1.9745 d= 0.005 for VO(CF3CF3acac)z in DMF,16 1.9847 
for voc15-3,12 1.979 for V O ( a ~ a c ) z , ~ ~  1.977 i 0.005 for 
VO(NCS)s-3 in DMF,15 and 1.9846 f 0.005 for VO- 
(CN)5-3 in KBr.15 These values cannot be explained 
by using a charge-transfer scheme putting the vanadyl 
oxygen-to-metal charge-transfer transition a t  high 
energy for VOSOl and a t  low energy for VO(CF3CF3- 
acac), unless one assumes that the V=O bond is highly 
ionic, which would be unexpected. 

In  addition to the ratio of the axial to equatorial 
field strength i t  is also possible to determine the field 
strength of the various ligands for MXEY systems using 
the expressions of Yamatera.23 Defining U, as the u 
electrostatic effect due to the u bond between ligand X 
and M and T, as the electrostatic effect due to the T 

bond between ligand X and M, he obtains the follow- 
ing expressions for the d orbital energy levels. E,, = 
E,, = 3 / 4 ~ 2 :  + l / d ~ , ,  E,, = T,, E,,-,, = u,, and E,, = 
2/3u, + 1 / 3 ~ ,  for MX5Y type ions. It is not possible 
to solve directly for u,, T,, u,, and T ,  since there are four 
unknowns and three experimental absorption bands. 
To reduce the number of unknowns we have made the 
assumption in our calculations that the ratio of u, to 
T ,  in VOX5 is the same as for the corresponding ligand 
in C O ( I I I ) . ~ ~  The rZl 
values indicate considerable V-0 T bonding while the 
u, values indicate a more normal V=O u bond (the 
corresponding values for OV2 in COO+ arez2 u, = 39,000 
cm.-l and xu = 24,000 cm.-l). 

Our data are given in Table 11. 
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Decaborane reacts rapidly with aqueous hydroxide 
Salts of this ion have been ion to form the Bl0HI3- ion. 
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isolated from solution and have been well character- 
ized and shown to be free of solvent.' However, if the 
solution ages2 and then a salt is precipitated, the salt 
tends to be solvated as judged by analysis and infra- 
red spectral data. Thus, there is the possibility that 
there is an intermediate between B10H13- and its hy- 
drolysis product BgH14- which is a solvated BI0Hl3- 
species3 We have evidence for such a solvate from a 
characterization of the aqueous decaborane-ammonia 
system. 

In the dissolution of decaborane in aqueous am- 
monium hydroxide, two moles of base per mole of de- 
caborane is required. The product is a monovalent 
anion that yields a cesium salt analyzing for C~BioH13- 
NH3. The chemistry of this species rather firmly es- 
tablishes that i t  is not a member of the BloH142- struc- 
tural class. The ammonia is not firmly bound in this 
ion. Hydrolysis in water is quite rapid, and the hy- 
drolysis product is B gH14-. Cyanide ion immediately 
converts the labile BloH13NH3- to the BloH13CN2- ions4 

It is unlikely that the ammonia molecule in labile 
C S B ~ O H ~ ~ N H S  simply occupies a lattice site or is co- 
ordinated to the cesium cation. This ion shows ultra- 
violet absorption maxima a t  essentially the same wave 
lengths as does B10H13-. However, the extinction co- 
efficient of the 335 mb absorption is about one-third 
that reported for B10H13-. Thus, the introduction of 
ammonia into this system has perturbed the electronic 
structure of B10H13-. The infrared and B1' n.m.r. 
spectra of CsBl0Hl3NH3 are significantly different from 
those of B10H13-. Furthermore, the interaction of 
hydroxide ion 11-ith BioHiRNH3- suggests that the am- 
monia may be bound in some fashion to the B1OH1d- ion. 
Interaction of hydroxide ion m-ith BloHl3NH3- does not 
yield the BloHl30H2- ion5 but yields a new ion of the 
same composition as the starting material, that is, 
B10H13NH3-. This new ion is believed to be a mem- 
ber of the BloH142- structural class. It is quite re- 
sistant to hydrolysis as is typical of this particular 
structural class. The ammonia molecule is not sus- 
ceptible to displacement by other nucleophiles such as 
cyanide ion, and finally acid degradation of this ion 
does not yield BgH14-,5'6 but rather B9H13NH3. The 
Bll n.m.r. spectrum is similar to that of other members 
of this structural class. 

Experimental Section 
Labile C ~ B ~ ~ H ~ ~ N H ~ . - D e c a b o r a n e  (15.8 g. 0.13 mole) was 

added in small portions to 250 ml. of concentrated ammonium 
hydroxide solution, a small amount of insoluble residue was re- 
moved by filtration, and a solution of 25 g. of cesium fluoride in 50 
ml. of water was added to the filtrate. The white precipitate 
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was collected by filtration, washed with methanol and ether, 
and air dried. The yield of CsBloH13KH3 was 31 g. (89cjG). 
Anal. Calcd. for CsBioH13XH3: Cs, 49.0; B, 39.9; H,  6.0; 
K, 5.2. Found: Cs, 46.7, 47.4; B, 38.7, 38.6; H ,  6.1, 6.3; K, 
5.3, 4.9. Platinum-catalyzed acidic hydrolysis gave 1758 ml. 
of Hz/g. of compound compared with a calculated amount of 
1817 ml./g. 

The lifetime of CsBloHlsSHs in water is only a few minutes but 
is significantly longer in a mixture of 807, acetonitrile and 20YG 
water. In  this medium, CSBIOHI~NH~ absorbs radiation a t  262 
mp (E 2870) and 335 m p  ( e  634). The infrared spectrum of CsBlo- 
H I ~ S H ~  shows N-H stretching a t  3290, 3250, and 3165 cm.-', 
B-H stretching a t  2470 cm.? with a shoulder a t  2355 crn-1, 
K-H deformation a t  1575 cm.-l with a shoulder a t  1600 cm.-'; 
other absorptions were observed a t  1395 (vs), 1193 (s), 1089 (m) ,  
1078 (sh), 1037 (s), 1010 (sh), 950 (m),  910 (m),  885 (w), 
855 (w), 817 (w), 795 (w), 760 (w), 741 (w), and 695 (w) cm-1. 

The B" n.m.r. spectrum (19.25 Mc.-trimethyl borate CX- 
ternal reference) consists of a lowfield doublet of intensity 1 a t  
11.9 p.p.m. which overlaps a doublet of intensity 7 ( J H H  = 
129 c.p.s.) a t  23.8 p.p.m. and a high-field doublet of intensity 2 
a t  53.7 p.p.m. ( J B H  = 137 c.P.s.). 

Stable CsB1~H13NH~.-Recrystallization of labile CsBlaH13- 
NH3 from a 50% potassium hydroxide solution gave a colorless, 
crystalline solid of the same composition. Anal. Found: Cs, 
47.7, 48.3; B, 39.8, 40.1; H ,  6.0, 6.1; S, 5.1, 5.1; hydrolytic 
hydrogen, 1848 ml./g. Recrystallization of CsBIOHl3 or CsBIOHl3- 
( CH30CHzCH20CHa), from cesium hydroxide solution gave 
C S ~ B I G H ~ ~ O H .  Anal. Calcd. for Cs2B10HI30H: Cs, 65.8; B, 
26.8; H, 3.48; 0, 3.96. Found: Cs, 65.4; B, 26.4; H, 3.68; 
0, 4.13 (KBrFd). 

Mr. K.  Babcock indexed stable CsB10H1:jNH3 as orthorhombic 
(2 = 4) with the space group P21212 and cell indices of a = 12.184, 
b = 11.525, and c = 7.580 A .  With an experimental density ol 
1.70, the calculated molecular weight is 272.5 compared to the 
theoretical value of 271.3. The X-ray powder pattern of stable 
CsBloH13NH3 is distinctly different from that of the labile species. 
The ultraviolet absorptions in water are a t  223 m p  ( e  7000) and 
250 mw ( e  5660). I n  the infrared spectrum of stable CsBloHlb- 
h-H3, the S-H stretching absorption is a doublet a t  3290 and 3205 
cm.-', the B-H stretching absorption a t  2500, 2465, 2410, and 
2340 cm.-', and the hT-H bending at 1592 cm.-' Other bands 
were observed a t  1408 (s), 1182 (m), 1130 (w), 1081 (m),  1025 
( s ) ,  966 (w) ,  930 (w),  910 (w), 875 (w), 806 (w),  720 (m),  and 
650 (w) c m 3 .  

The B11 n.m.r. spectrum in water has a broad, low-field peak at  
26.1 p.p.m. which partially overlaps another multiplet centered 
a t  39.7 p.p.m.; the total relative intensity is 8. There is a well- 
resolved, high-field doublet of intensity 2 a t  60.2 p.p.m. ( J B H  = 
134 c.P.s.). 

B9H13NH3.-Recrystallized C S B I O H ~ ~ S H ~  (4.0 g., 0.016 mole) 
was dissolved in 200 ml. of warm water, and 10 ml. of 307, hydro- 
chloric acid was added over a period of 1 hr. Hydrogen was 
evolved during the acid addition, and BgH13NH3 precipitated. 
The solid (-1 9.) was collected by filtration and was recrystal- 
lized from hot water and from benzene, m.p. 162-163" dec. 
Anal. Calcd. for B9H13NH3: B, 76.4; H ,  12.7; N, 11.0; mol. 
wt., 127.5. Found: B, 75.7; H ,  12.2; N,  10.6; mol. wt., 116, 
119 (cryoscopic in ( CH3)&O). Ebullioscopic determinations in 
benzene and acetone consistently gave high values, -170-180, 
for the molecular weight. 

The ultraviolet absorption in water is a t  267 m p  ( e  3940). 
The infrared spectrum consists of thc following bands (cm.-I): 
3290, 3265, and 3210 (S-H stretching), 2520 (B-H stretching), 
1590 (N-H deformation), 1440 (broad, m), 1400 (sharp, s) ,  
1364 (broad, m),  1150 (m),  1106 (m), 1047 (sh), 1025 (m),  1005 
(m),  909 (broad, m), 838 (w), 785 (w), 755 (w),  700 (broad, w) 
cm.-'. The Bll n.m.r. spectrum consists of two overlapping, 
low-field doublets a t  7.8 and 17.6 p,p.ni. which upoii irradiation 
at  60 &IC. collapse into two single peaks each of intensity 1,  a 
multiplet centered at  36.5 p.p.m. of intensity 5, and a high-field 
doublet of intensity 2 a t  57.4 p.1j.m. ( J m  = 149 c.p.s.). 


